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Protons:

• Transverse beam dynamics.

� Simple model of the proton.

� Spin dynamics.

� Depolarizing resonances.

� Siberian snakes.

� The real machines: RHIC and injectors.

Electrons/Positrons:

• Longitudinal beam dynamics.
• Synchrotron oscillations and tune.
• Electrons: Synchrotron radiation

� Radiative polarization.

� Quantum fluctuations ⇒ Spin Diffusion

� Polarization in some real e± machines.

� Measurements with polarized e± beams.
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Linac: ~F = q ~E(t). Ring with rf cavity

• Must maintain synchronism of bunch with rf phase.

• Particles oscillate in energy about the stable synchronous phase.
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Dipole magnets bend the beam
around the ring.

B

p

proton

q=+1

F

Bend magnet (dipole)

Field out of screen

Charged particles are deflected by
magnetic fields. Lorentz Force:

~F =
q

γm
~p× ~B

Quadrupole magnets focus the
beam for stability.

Magnetic
Field

Protons moving into screen

S

N

N

S

Magnetic Lens  (quadrupole)

Force

Vertically focusing

Horizontally
defocusing
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H(X,PX , Y, PY , Z, PZ ; t) =

√

(~P − q ~A)2 +m2c4 + qφ

After a bunch of canonical transformations and φ = 0, ~A = (0, 0, As):

H(x, x′, y, y′, z, δp/p0; s) ' − q

p0

As −
(

1 +
x

ρ

)(

1 +
δp

p0

− 1

2
(x′2 + y′2) + · · ·

)

s= ρθρ

x
z

y

Z

X

Y

Design trajectory coordinate system
Local traveling

Fixed lab coordinate
system

θ

ρ =
p

qB⊥

x′ =
dx

ds

y′ =
dy

ds

Paraxial approx.: |x′|, |y′| � 1

 4 �

QCDSP: Spin Dynamics in Accelerators
Waldo MacKay 7 June, 2004



�� � �� � �
 � �� �

x′′ + kx(s)x =
δ

ρ(s)
,

y′′ + ky(s)y = 0,

with δ =
δp

p0

.

For quadrupoles:

kx =
q

p

∂By

∂x

ky = −q
p

∂By

∂x

Harmonic oscillator with periodic spring constant.

Periodic conditions: kj(s+ L) = kj(s), ρ(s+ L) = ρ(s)

where L is length of periodic cell.

• Horizontal motion has inhomogeneous dispersion term.
◦ Ignore it for now.

 5 �

QCDSP: Spin Dynamics in Accelerators
Waldo MacKay 7 June, 2004



� � � 
 � �� � 
 � �� � �� � �
 � ��

Use Floquet’s (Block’s) Theorem ⇒
Quasi-periodic solutions of form:

x(s) =
√

Wβ(s) cos(ψ(s)), with

ψ′(s) =
1

β(s)
.

Periodicity of β-function: β(s+ L) = β(s).

Note: In general ψ(s+ L) 6= ψ(s) + n2π. Resonances are bad!

x′(s) = −
√

W
β

(α cosψ + sinψ) ,

with α = − 1
2
β′.
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Alternate focusing and defocusing lenses for stability.

Horizontal Betatron Oscillation
with tune: Qh = 6.3,

i.e., 6.3 oscillations per turn.

Vertical Betatron Oscillation
with tune: Qv = 7.5,

i.e., 7.5 oscillations per turn.
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For a particular trajectory with initial conditions:

• Solve for sinψ and cosψ from equations for x and x′.

• Use sin2 ψ + cos2 ψ = 1 to get an invariant:

W =
1

β

[

y2 + (αy + βy′)2
]

(1)

• Functions of s: y(s), y′(s), β(s), α(s). (β and α are periodic.)

• Eq. (1) is the equation for an ellipse.
• Area of ellipse = πW.

• Beam envelope: ±
√

β(s)ε
• πε is the rms emittance
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• Most beams have a low enough density, so that we ignore hard collisions
between particles.
• Thus we can use a 6d phase space rather than a 6N-d phase space.

• In the phase space of coordinates and their corresponding canonical mo-
menta, the phase flow of the particle trajectories evolves so that the volumes
of differential volume elements are preserved.
• In other words, the Jacobian determinant is 1.

• Emittance is the area of the projection of the beam’s phase-space volume
onto a particular (xi, Pi) plane.
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Horizontal Betatron Oscillation
with tune: Qx = 3.28,
tracked through 10 turns
with 8 periodic cells.

x

x’

Poincaré plot of proton on suc-
cessive turns for one location in
the ring.
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.Energy =−

B

µ B

µ B

r

µ
x=dF Bdq v 

µ= πr2

dF
i

x

dj=dq v

Torque =

� Semiclassical model:
• The spin ~S has a constant magnitude in the rest frame.
• The magnetic moment ~µ ∝ ~S.

• ~µ has a constant magnitude in the rest frame.
(Sort of like a loop of infinite inductance.)
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Bar magnet+ "proton"=

+ =+

+ Charge

N

S
S

N

Gyroscope

Magnetic
DipoleSpin

Moment

++ +

Polarization: Average spin of the ensemble of protons.

~P =
1

N

N
∑

j=1

~S

|S|
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Energy-momentum tensor (à la Weinberg)

Tαβ(x) = T βα(x) =
∑

n

pα
np

β
n

En
δ3(x− xn(t))

For isolated system
∂

∂xα
Tαβ = 0.

Define 4d analogue of ~r × ~p:

Mαβγ = xαT βγ − xβTαγ

Jαβ =

∫

M0αβd3x =

∫

xαT β0 − xβTα0d3x

Spin (intrinsic angular momentum):

Sα = 1
2cεαβγδJ

βγuδ, proper velocity: uδ = dxδ

dτ .
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For a particle at rest with CM at rest at the origin:

J�µν :







0 0 0 0
0 0 S�

z −S�
y

0 −S�
z 0 S�

x

0 S�
y −S�

x 0






, ( ~J� = ~S�)

Boost along z:

Jµν :







0 γβS�
y −γβS�

x 0
−γβS�

y 0 S�
z −γS�

y

γβS�
x −S�

z 0 γS�
x

0 γS�
y −γS�

x 0






, ⇒ ~J =





γS�
x

γS�
y

S�
z





Sµ :







γβS�
z

S�
x

S�
y

γS�
z






, ⇒ ~S =





S�
x

S�
y

γS�
z



 , S0 = ~β · ~S

~J − ~S =





(γ − 1)S�
x

(γ − 1)S�
y

(1 − γ)S�
z
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~rCM × ~pCM = ( ~J − ~S)⊥

γβmc(−xCM ŷ + yCM x̂) = (γ − 1)~S�
⊥

γβmc(~xCM + ~yCM) = (γ − 1) ẑ × ~S�
⊥

~r⊥CM =
γ

γ + 1

~β × ~S

mc

CM shifts to right.v=aω

CM at rest.
S

FasterSlower

S
Boost into screen

Center of charge wobbles: classical “Zitterbewegung”
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1. Boost observer to left.
2. Boost observer downward.
3. Boost back to rest.

• Net rotation of rest frame.

Rest Sytem: SSytem: S'

Sytem: S'' Rest Sytem: S'''

Boost along
horizontal (-y)

γ=2

B
oo

st
 a

lo
ng

 v
er

tic
al

 (
-x

)

γ=
2

63.43°

γ=4

B
oo

st
 b

ac
k

36.87°
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In the local rest frame of the proton, the spin precession of the proton obeys
the Thomas-Frenkel equation:

d~S�

dt
=

q

γm
~S� ×

[

(1 +Gγ) ~B⊥ + (1 +G) ~B‖ +

(

Gγ +
γ

γ + 1

) ~E × ~v

c2

]

.

This is a mixed description: t, ~B, and ~E in the lab frame, but spin ~S� in local
rest frame of the particle:

Proton: G =
g − 2

2
= 1.792847, 523.34 MeV/unit Gγ

Electron: a = G =
g − 2

2
= 0.001159652, 440.65 MeV/unit aγ

γ =
Energy

mc2
.
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In the local rest frame of the proton, the spin precession of the proton obeys
the Thomas-Frenkel equation:

Torque :
d~S�

dt
=

q

γm
~S� ×

[

(1 +Gγ) ~B⊥ + (1 +G) ~B‖
]

TF

Force :
d~p

dt
=

q

γm
~p × ~B⊥ Lorentz

(This is a mixed description: t, and ~B in the lab frame, but spin ~S� in local rest
frame of the proton.)

G =
g − 2

2
= 1.7928, γ =

Energy

mc2
.
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Example with 6 precessions of spin in one
turn:

Gγ + 1 = 6.

Spin tune: number of precessions per turn
relative to beam’s direction.

So we subtract one:

νspin = Gγ ∝ energy,

i.e., 5 in this example.
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misaligned
quad

• A misaligned quadrupole creates a steering error which propagates through
the lattice.

• For an accelerator ring, this shifts the closed orbit away from the design
trajectory.

• If the misalignment is vertical, then the design trajectory will have a periodic
set of small vertical bends interspersed with the normal horizontal bends of
the bending magnets.

• This leads to an integer resonance condition for the spin tune.
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Simple Resonance Condition:

νspin = N + NvQv,

(imperfection) (intrinsic)

where N and Nv are integers.

Magnetic
Field

Protons moving into screen

S

N S

Magnetic Lens  (quadrupole)
Vertically focusing

N
Force
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Adding a partial snake opens up stop
bands around the integer imperfection
resonances.

At the snake the stable spin direction
points along the snake’s rotation axis
when Gγ = integer.

Partial snake strength: µ
π

cosπνs = cos(Gγπ) cos µ
2

46 47 48
46

47

48
 Snake
Strength

0%
25%
50%
100%

Gγ

ν s

 24 �

QCDSP: Spin Dynamics in Accelerators
Waldo MacKay 7 June, 2004



� � � � �� �� �� �� � 
 	 �� 	� �� �� � 	

Froissart—Stora Formula:

Pf

Pi

= 2 exp

(

−π|ε|
2

2α

)

− 1.

Ramp rate: α = dGγ
dθ , (θ : 2π/turn.)

Resonance strength: ε =Fourier amplitude.
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Gγ
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0.8

1

S
y

0+ν, (Qx,Qy)=(8.7,8.8), (εx,εy)=(20,10)π
westing house

δ=0.0

Coupling res.
νs=Qx

Intrinsic res.
νs=Qy

Imperfection resonances
νs=N

7.5 7.7 7.9 8.1 8.3 8.5 8.7 8.9 9.1 9.3 9.5
Gγ

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

S
y

0+ν, (Qx,Qy)=(8.7,8.8), (εx,εy)=(20,10)π
westing house, w. 10mm coherence amplitude(Qm=0.215, ∆BL=18Gm)

δ=0.0, no coupling

AC dipole used to increase strength
of νs = Qy resonance.

(Simulations by Mei Bai)
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12+Qy 36-Qy 24+Qy 48-Qy 36+Qy Extract

20 25 30 Gγ 35 40 45
150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450

Scaled gauss clock counts
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AGS has 12 superperiods.
Vertical betatron tune: 8.7
Snake strength: 5%

(From Jeff Woods)

AC dipole pulses at resonances:
• 0 +Qy

• 12 +Qy

• 36 −Qy

• 36 +Qy
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)

Qx = 28.236

Qy = 29.219

πεy = 10π µm

Will depolarize beam
during acceleration.

Solution: Snakes
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• 2 snakes: spin is up in one half of the ring,
and down in the other half.

• Spin tune: νspin = 1
2

(It’s energy independent.)

• “The unwanted precession which happens
to the spin in one half of the ring is un-
wound in the other half.” Unwinds

Winds
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(Here I drop the “�” superscript on ~S.)

d~S

dt
= ~W × ~S

H(~q, ~P , ~S; s) = Horb + Hspin

= Horb + ~W · ~S +O(h̄2)

Group symmetries:

• Orbital motion without spin: Sp(6,r).

• Spin by itself: SU(2, c) ∼= SO(3, r) (homomorphic).

• Full blown symmetry: Sp(6, r) ⊕ SU(2, c).
• Spin dependence on orbit (Thomas-Frenkel).
• Orbit dependence on spin (Stern-Gerlach Force)—Usually ignored.
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SU(2) with usual spinor notation:

Pauli matrices: σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

.

Rn̂(θ) = ei n̂·~σ θ/2 =

(

cos θ
2

+ inz sin θ
2

(ny + inx) sin θ
2

(−ny + inx) sin θ
2

cos θ
2
− inz sin θ

2

)

.

SO(3) :
Rn̂(θ) =I cos θ +





0 nz −ny

−nz 0 nx

ny −nx 0



 sin θ

+





n2
x nxny nxnz

nxny n2
y nynz

nxnz nynz n2
z



 (1 − cos θ).
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Turn: j Turn: j+1

Closed orbit

Unclosed trajectory

• For the closed orbit: ~n0(s) = ~n0(s+ L),

with ~q0(s) = ~q0(s+ L) and ~P0(s) = ~P0(s+ L).

• For other locations in phase space: ~n(~q, ~P , s) = ~n(~q, ~P , s+ L),
even though in general q(s+ L) 6= q(s) and P (s+ L) 6= P (s).
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 a: HERA-p / 8 snakes / 4 pi mm mrad / 800 GeV
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 b: HERA-p / 8 snakes / 4 pi mm mrad / 802 GeV
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n̂-vector at 1σ and 802 GeV

• Simulation with only vertical betatron motion.

• 802 GeV is closer to a resonance spin resonance than 800 GeV.

Des Barber et al.
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 a:  HERA-p / 8 snakes / 64 pi mm mrad / 800 GeV
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 b: HERA-p / 8 snakes / 64 pi mm mrad / 802 GeV
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• Larger amplitude oscillations have a larger tune shift due to nonlinear ele-
ments.

• 802 GeV is closer to a resonance spin resonance than 800 GeV.

Des Barber et al.
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Particles with larger
amplitude betatron
oscillations may expe-
rience more precession
away from the stable
spin direction of the
center of the beam

(Alfredo Luccio)
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RHIC

AGSLINAC

BOOSTERSOURCE

LINAC: Linear Accelerator
AGS: Alternating Gradient Synchrotron
RHIC: Relativistic Heavy Ion Collider

 37 �

QCDSP: Spin Dynamics in Accelerators
Waldo MacKay 7 June, 2004



� � 	� 	� �
 �� � � 	 � � �� � � 
 �� �

STARPHENIX

PHOBOS BRAHMS

Polarimeters
Hjet CNI

Snakes
Rotators

AC Dipole

RHIC

AGSLINAC

BOOSTERSOURCE

Solenoid Snake

Helical SnakeAC
Dipole

Polarimeters
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KEK OPPIS∗

upgraded at TRIUMF

70 → 80% Polarization

15 × 1011 protons/pulse

at source

6 × 1011 protons/pulse

at end of LINAC

∗Optically Pumped Polarized Ion Source
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a) TRIUMF OPPIS                                                                              b) ECR PROTON SOURCE

Fig. 1.   1) ECR Proton Source,  2) Superconducting Solenoid,  3) Optically-Pumped Rb Cell,  4) Deflection Plates,  5) Sona
Transition Region,  6) Ionizer Cell,  7) Ionizer Solenoid,  8) Quartz Tube,  9) ECR Cavity,  10) Three Grid Extraction System, 
11) Boron-Nitride End Cups,  12) Indium Seals.

Capture 
polarized

electron from

alkali atom
optically pumped

Transfer of
electron-spin
polarization to
nuclear-spin
polarization

(Sona transition)

Ionization

H - (p  )(p  )H 0H 0 (e  )H +

protons
Generate
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x

s
φsnake axis

µ

(beam)
The rotation axis of
the snake is φ, and µ is
the rotation angle.

Note that the φ con-
tours shift slightly
from injection (red)
at 25 GeV to storage
(pink) at 250 GeV.
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M ,j 0 P ij

M ,j 1 P fj
M ,j 2

eint = 0.5,    εimp = 0.05,    2 Snakes,    spin tune = 0.5
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the x-y plane at an an-
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Black dots show settings for RHIC energies in
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x
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z

Rotator’s spin vector at injection energy
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z

Rotator’s spin vector at 250 GeV
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x

φ Spin −

Spin +

"Left−Right" Asymmetry
(Tilted at 45 )

x

x

Schematic layout of PHENIX polarimeters
Yellow from left. Blue from right.

The PHENIX Local Polarimeter measures an asymmetry in small angle
scattered neutrons which is proportional to transverse polarization.

ALR =

√
L+R− −

√
L−R+

√
L+R− +

√
L−R+

∝ Py
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Vertical polarization
with rotators off.

Spin is down.

Rotators on

Spin is radially inwards!

OOPS!

Reverse all rotator
power supplies and try
again.

YES!
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 Gγ = 0 +Qy

Top: AC dipole pulse amplitude
(current)

Bottom: Beam current.
(Just scrapes the beam pipe.)

Top: Beam coherence

Bottom: Tune spectrum
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• Radiated power:

Pγ =
2

3
remc

3 γ
4β4

ρ2
, re =

e2

4πε0mc2
.

Radiation in forward direction with opening angle ∝ γ−1

• Energy loss per turn:

Uγ =

∮

Pγ

c
ds

• Critical energy: half the power is radiated by photons less than the criti-
cal energy, and the other half, above.

uc = h̄ωc =
3h̄c

2ρ
γ3
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• Number of photons per second:

Nγ =

∫ Umax

0

nγ(uγ) duγ =
5

2
√

3

αc

ρ
γ

here: α = 1/137)

• Number of photons per radian:

Nr =
5α

2
√

3
γ

• Average photon energy and 2nd moment:

〈uγ〉 =
1

Nγ

∫ Umax

0

unγ(u) du =
8

15
√

3
uc ' 0.32uc

〈u2
γ〉 =

1

Nγ

∫ Umax

0

u2nγ(u) du =
11

27
√

3
u2

c ' 0.41u2
c
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• Energy spread: σu =
√

Cq

Jsργ
2mc2

with Cq = 3.8 × 10−8 m and Js ∼ 2 + D.

Ring Energy σu

[GeV] [MeV]
CESR 5.5 3
HERAe 27.5 3
LEP 45 30
LEP 60 53
LEP 100 150

Remember: Integer resonances separated by only 440 MeV.

The polarization in LEP dropped down to nothing just above 60 GeV.
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ωrf = hωrev

W = −U − Us

ωrf

dW

dt
=

qV

2πh
(sinφs − sinφ)

dϕ

dt
' ω2

rfηph

β2Us
W

dωrev

ωrev

=
dβ

β
− dL

L
= ηph

dp

p

ϕs ϕs+2π

τ+|dτ|
τ

τ−|dτ|

Vrf

ϕ=ωrft

ηph < 0 above transition energy.

Add in synchrotron oscillations to resonance condition:

νspin = N +NvQv +NhQh +NsyQsy
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Canonical cordinate: ϕ and conjugate momentum: W

a) ηtr > 0
W

φ
π−π φs

b) ηtr < 0
W

φ
2πφs
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In a homogenious magnetic field the transition rates are

W↑↓ =
5
√

3

16

e2γ5h̄

4πε0mec2|ρ|3
(

1 +
8

5
√

3

)

W↑↓ =
5
√

3

16

e2γ5h̄

4πε0mec2|ρ|3
(

1 − 8

5
√

3

)

.

Evaluating the equilibrium polarization have (Sokolov Ternov)

PST =
W↑↓ −W↓↑
W↑↓ +W↓↑

=
8

5
√

3
= 0.9238.

An unpolarized beam polarizes:

P (t) = PST [1 − exp(−t/τST)] ,

where the polarization rate is given by

τ−1
ST

=
5
√

3

8

e2γ5h̄

4πε0m2
ec

2

1

L

∮

ds

|ρ|3 .

 57 �

QCDSP: Spin Dynamics in Accelerators
Waldo MacKay 7 June, 2004



� � �� � � � � � � 	� � � � �
 	�

Ring Particle Energy Nγ ∆U τST

W↑↓

frevNγ

[GeV] [/turn] [loss/turn]

CESR e± 5.5 700 −1 MeV 167 min 1 × 10−13

HERAe e± 27.5 3600 −83 MeV 23 min 1 × 10−12

LEP e± 45 5800 −120 MeV 300 min 2 × 10−13

LEP e± 60 7800 −380 MeV 81 min 8 × 10−13

RHIC p 100 7 −3 meV 3 × 1014 yr 6 × 10−29

RHIC p 250 18 −0.13 eV 3 × 1012 yr 2 × 10−27

HERAp p 920 65 −8.5 eV 1 × 1011 yr 3 × 10−26

Tevatron p 1000 70 −8.5 eV 2 × 1011 yr 2 × 10−26

SSC p 20000 1400 −0.12 MeV 7 × 107 yr 3 × 10−23
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uγ

θx pu

W

ϕ

In phase space quantum fluctuations cause instantaneous hops of momentum
from one ellipse to another. (Hops in the Action.)
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Turn: j Turn: j+1

Closed orbit

Unclosed trajectory

• For the closed orbit: ~n0(s) = ~n0(s+ L),

with ~q0(s) = ~q0(s+ L) and ~P0(s) = ~P0(s+ L).

• For other locations in phase space: ~n(~q, ~P , s) = ~n(~q, ~P , s+ L),
even though in general q(s+ L) 6= q(s) and P (s+ L) 6= P (s).
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Derbenev–Kondratenko formula for equilibrium polarization:

PDK =
8

5
√

3

∮

〈

1
|ρ|3 b̂ ·

(

n̂− ∂n̂
∂δ

)

〉

s
ds

∮

〈

1
|ρ|3

[

1 − 2
9
(n̂ · ŝ)2 + 11

18

(

∂n̂
∂δ

)2
]〉

s
ds

1

τDK

=
5
√

3

8

reγ
5h̄

me

1

L

∮

〈

1
|ρ|3

[

1 − 2
9
(n̂ · ŝ) + 11

18

(

∂n̂
∂δ

)2
]〉

s
ds

averaged over phase space at azimuth s.

δ = ∆p/p is the fractional momentum deviation from design.
n̂ is the invariant spin field.

b̂ = ŝ× ˙̂s
| ˙̂s| is the direction of magnetic field if ~E = 0.

ρ is the cyclotron radius of the trajectory.
L is circumference of synchrotron.
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1
τdep

' 5
√

3
8

reγ5h̄
me

1
L

∮

〈

1
|ρ|3

(

∂n̂
∂δ

)2
〉

s
ds

1

τpol

' 1

τST

+
1

τdep
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As an example from CESR (CUSB): MΥ = 9459.97 ± 0.11 ± 0.07 MeV

[Phys Rev D29, 2483 (1984)].
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From Angelika Drees’ Thesis
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(Des Barber in “eRHIC Zeroth-Order Design Report)
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